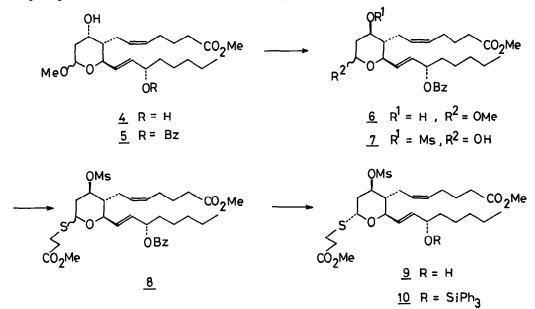

SYNTHESIS OF 9a, 11a-THIATHROMBOXANE A, METHYL ESTER

Shuichi Ohuchida, Nobuyuki Hamanaka^{*} Shinsuke Hashimoto, and Masaki Hayashi Research Institute, Ono Pharmaceutical Co., Ltd. Shimamoto-cho, Mishima-gun, Osaka 618, Japan


Abstract: The synthesis of thromboxane A_2 (TXA₂) analogue, 9α ,ll α -thia-TXA₂ methyl ester <u>2</u>, in which the oxygen atom in the oxetane ring of TXA₂ was replaced by a sulfur atom, is described.

Among a number of the metabolites of arachidonic acid, thromboxane A_2 $(TXA_2)^1$ is a particularly conspicuous substance because of the powerful biological activities (e.g. platelet aggregation and vasoconstriction), the chemically rare structure, and the extreme instability $(t_{1/2} = 32 \text{ sec in } pH 7.4 \text{ solution at } 37 \text{ °C})$. To utilize practically its very important biological properties, some stable analogues possessing biological effects were synthesized.² We have recently reported the synthesis of (\pm) -dithia-TXA₂ 1 which is one of the most potent agonists.³ In this report we wish to disclose the first synthesis of 9α , 11α -thia-TXA₂ methyl ester 2 in which the oxygen atom in the oxetane ring of TXA₂ was replaced by a sulfur atom. Since this analogue possesses the skeleton very similar to thromboxane A_2 , it is of special interest as a TXA₂ analogue.

The synthesis was designed on the assumption that intermediate <u>A</u> would be an ideal precursor to the desired bicyclic system, 2-oxa-6-thiabicyclo[3.1.1]heptane skeleton.³ We furthermore expected that <u>A</u> should be stereoselectively derived from a corresponding lactol such as <u>7</u> because of an anomeric effect. These expectations will be demonstrated to have been realized.

The thromboxane B_2 derivative $\underline{4}$ was chosen as a starting material.⁴ Conversion of $\underline{4}$ into $\underline{7}$ was carried out as follows. After one of the two hydroxyl groups in $\underline{4}$ (C_{15} -OH) was selectively protected as its benzoate ($\underline{5}$, benzoyl chloride, pyridine, -25 °C, lh, 90%), inversion of the other hydroxyl group (C_9 -OH) with triphenylphosphine, formic acid, and diethyl azodicarboxylate⁵ [THF, 0 °C, 2h] followed by removal of the formyl group of the resulting product (potassium bicarbonate, methanol, 25 °C, 30 min) afforded a $C_9\beta$ equatorial alcohol <u>6</u> (45% from <u>5</u>). The compound <u>6</u> was converted into <u>7</u> by mesylation (methanesulfonyl chloride, triethylamine, -25 °C, 10 min, 98%) and then treatment with acetic acid, THF, H₂O, and 85% phosphoric acid (40:20:10:1) (55 °C, 4 h, 67%).

The next problem was the introduction of a functionalized thiol into the system with proper stereochemistry. This was realized by reaction of $\frac{7}{2}$ with methyl 3-mercaptopropionate³ (4 equiv) in the presence of boron trifluoride etherate (1.3 equiv) (dichloromethane, 0 °C, 15 min) to provide <u>8</u> as an epimeric mixture at C₁₁ in 88% yield. Although these isomers were inseparable in this step, removal of the benzoyl group (sodium methoxide, methanol, 25 °C, 6 h) gave two products which were separable by column chromatography on silica gel $(9^6:62\%, C_{11}\text{-isomer}^7:20\%)$. The compound 9 was transformed into the corresponding triphenylsilyl ether 10^6 (triphenylsilyl chloride, pyridine, 0 °C, 30 min, 80\%).

The stage was now set for the construction of the desired bicyclic system. After numerous attempts to form the thietane ring by intramolecular attack of sulfur anion liberated with base,⁸ we found that the use of sodium bis(trimethylsilyl)amide [NaN(TMS)₂] was the most effective. Reaction of <u>10</u> with 2 equiv of NaN(TMS)₂ in benzene at 60 °C for 1 h followed by addition of hexamethylphosphoric triamide (1.5 equiv) and then stirring at 70 °C for 20 min afforded the desired bicyclic compound $3^{6,9}$ in 36% yield (51% conversion yield).¹⁰ Finally the compound <u>3</u> was treated with tetra-<u>n</u>-butyl-ammonium fluoride (2 equiv) (THF, 0 °C, 1 h) to provide cleanly the final product 2.^{6,11}

Some valuable information on the bicyclic system was obtained from NMR studies on $\underline{2}$ and $\underline{3}$. Examination of their molecular models shows that dihedral angles between C_9-H and $C_{10}-H_b$ and between $C_{10}-H_b$ and $C_{11}-H$ are approximate 90°, respectively. As expected, the NMR spectrums of $\underline{2}$ and $\underline{3}$ (200 MHz, CDCl₃) exhibit $C_{10}-H_b$ as a doublet coupled to $C_{10}-H_a$ (J = 9.5 Hz). In addition, a long-range coupling between C_9-H and $C_{11}-H$ was observed (J = 5 Hz).¹²

Hb H 3 Value (Hz)
Ha H 11 H 8 R J Value (Hz)

$$J_{8,9} = 1, J_{8,12} = 8, J_{9,10a} = 5$$

H J Value (Hz)
 $J_{8,9} = 1, J_{8,12} = 8, J_{9,10a} = 5$
 $J_{9,10b} = 0, J_{9,11} = 5, J_{10a,10b} = 9.5$
 $J_{10a,11} = 3, J_{10b,11} = 0$

Preliminary experiments on biological activities show that the analogue 2 possesses potent biological activities (e.g. contracting dose on rat aorta strip, CD_{50} : 10^{-7} M).

References and Notes

- M. Hamberg, J. Svensson, and B. Samuelsson, Proc. Natl. Acad. Sci. U.S.A 72, 2994 (1975).
- For some carbon analogues, see T. K. Schaaf, D. L. Bussolotti, M. J. Parry, and E. J. Corey, J. <u>Am</u>. <u>Chem</u>. <u>Soc</u>. <u>103</u>, 6502 (1981) and references cited therein. For some sulfur analogues, see S. Kosuge, N. Hamanaka, and M. Hayashi, <u>Tetrahedron Lett</u>. <u>22</u>, 1345 (1981). S. Ohuchida, N. Hamanaka, and M. Hayashi, <u>Ibid</u>. <u>22</u>, 1349 (1981). <u>Idem</u>, <u>Ibid</u>. <u>22</u>, 5301

(1981).

- S. Ohuchida, N. Hamanaka, and M. Hayashi, J. <u>Am. Chem. Soc.</u> <u>103</u>, 4592 (1981).
- 4. W. P. Schneider and R. A. Morge, Tetrahedron Lett. 3283 (1976).
- 5. A. K. Bose, B. Lal, W. A. Hoffman, and M. S. Manhas, <u>Tetrahedron</u> Lett. 1619 (1973).
- 6. Partial spectral data. 9: NMR(200 MHz, CDCl₃) δ 5.87 (dd, J = 15 and 6 Hz, 1 H), 5.68 (dd, J = 15 and 6 Hz, 1 H), 5.45 (m, 3 H), 4.91 (dt, J =5 and 10 Hz, 1 H), 4.43 (dd, J = 10 and 6 Hz, 1 H), 4.15 (m, 1 H), 3.71(s, 3 H), 3.68 (s, 3H), 3.01 (s, 3 H); IR (neat) 3500, 1730, 1430, 1350, 1240, 1170, 970, 930, 850 cm⁻¹; mass (m/e) 468 (M⁺-MsOH), 450, 445, 349, 331. 10: NMR (200 MHz, CDCl₃) & 7.62 (m, 6 H), 7.39 (m, 9 H), 5.82 (dd, J = 15 and 6 Hz, 1H), 5.54 (dd, J = 15 and 7 Hz, 1H), 5.39 (m, 3 H), 4.89 (dt, J = 5 and 10 Hz, 1 H), 4.38 (m, 2 H), 3.67 (s, 3 H), 3.66 (s, 3 H),3.01 (s, 3 H); IR (neat) 1730, 1585, 1420, 1350, 1240, 1170, 1100, 1040, 970, 930, 850, 740, 700 cm⁻¹; mass (m/e) 726 (M⁺-MsOH), 702, 606. 3: NMR (200 MHz, CDCl₃) δ 7.66 (m, 6 H), 7.41 (m, 9 H), 5.85 (dd, J = 15 and 6 Hz, 1 H, C_{13} -H), 5.63 (dd, J = 15 and 6 Hz, 1 H, C_{14} -H), 5.43, 5.27 (each m, 2 H, $C_{5,6}$ -H), 5.36 (dd, J = 5 and 3.5 Hz, 1 H, C_{11} -H), 4.59 (dd, J = 8 and 6 Hz, 1 H, C_{12} -H), 4.36 (br q, J = 6 Hz, 1 H, C_{15} -H), 3.68 (s, 3 H, OMe), 3.49 (ddd, J = 9.5, 5, and 1 Hz, 1 H, C_{10} -H_a), 3.31 (dt, J = 1 and 5 Hz, 1 H, C_9 -H), 2.29 (t, J = 6.5 Hz, 2 H, C_2 -H), 1.99 (d, J = 9.5 Hz, 1 H, C_{10} -H_b), 0.81 (t, J = 6.5 Hz, 3 H, C_{20} -H); IR (neat) 1730, 1580, 1420, 1240, 1110, 1010, 970, 850, 730, 700 cm⁻¹. 2: NMR (200 MHz, CDCl₃) δ 5.89 (dd, J = 15 and 6 Hz, 1 H, C₁₃-H), 5.78 (dd, J = 15 and 6 Hz, 1 H, C_{14} -H), 5.44, 5.33 (each m, 2 H, $C_{5,6}$ -H), 5.37 (dd, J = 5 and 3 Hz, 1 H, $C_{11}-H$, 4.70 (dd, J = 8 and 6 Hz, 1 H, $C_{12}-H$), 4.18 (br q, J = 6 Hz, 1 H, C_{15} -H), 3.69 (s, 3 H, OMe), 3.55 (ddd, J = 9.5, 5, and 1 Hz, C_{10} -H_a), 3.40 (dt, J = 1 and 5 Hz, 1 H, C_9 -H), 2.31 (t, J = 7 Hz, 2 H, C_2 -H), 2.10 (d, J = 9.5 Hz, 1 H, $C_{10}-H_{b}$), 0.89 (t, J = 6 Hz, 3 H, $C_{20}-H$); mass (m/e) 382 (M⁺), 364, 349.
- 7. The anomeric proton (C₁₁-H) was observed as a double doublet (J = 12 and 2 Hz) at δ 4.59.
- 8. Potassium <u>tert</u>-butoxide³ in hexamethylphosphoric triamide which was used in the construction of 2,6-dithiabicyclo[3.1.1]heptane skeleton gave only a trace of the desired product.
- 9. This compound was very sensitive to acid. Therefore silica gel for TLC was treated with 5% triethylamine-ether solution prior to use.
- 10. The starting material (30%) was recovered.
- Many trials to hydrolyze the methyl ester in <u>2</u> with base resulted in failure because the thietane ring opened. That will be reported in detail.
- 12. In the case of <u>1</u> (200 MHz, CDCl₃), the value of $J_{9,11}$ was 4 Hz.³

(Received in Japan 3 April 1982)